
CUnet (MKY43) PCI Board

CUB-43PCI1

User's Manual

STD_CUB43PCI1_V1.0E

Notes
1. The information in this document is subject to change without prior notice. Before

using this product, please confirm that this is the latest version of document.
2.Technical information in this document, such as explanations and circuit examples,

are just for references to use this product in a proper way. When actually using this
product, always fully evaluate the entire system according to the design purpose
based on considerations of peripheral circuits and environment. We assume no
responsibility for any incompatibility between this product and your system.

3.We assume no responsibility whatsoever for any losses or damages arising from the
use of the information, products, and circuits in this document, or for infringement of
patents and any other rights of a third party.

4.When using this product and the information and circuits in this document, we do not
guarantee the right to use any property rights, intellectual property rights, and any
other rights of a third party.

5.This product is not designed for use in critical applications, such as life support
systems. Contact us when considering such applications.

6.No part of this document may be copied or reproduced in any form or by any means
without prior written permission from StepTechnica Co., Ltd.

CUB-43PCI1 User's Manual

Preface

This manual describes CUB-43PCI1, PCI board with MKY43 which is a kind of CUnet family IC.
Be sure to read "CUnet Introduction Guide" before using CUB-43PCI1 and understanding this manual.

● Target readers
・Those who first build a CUnet.
・Those who first use StepTechnica's CUB-43PCI1 to build a CUnet.

● Prerequisites
This manual assumes that you are familiar with:
・Network technology
・Semiconductor products (especially microcontrollers and memory)

● Related manuals
・CUnet Introduction Guide
・CUnet Technical Guide
・CUnet MKY43 User's Manual

【Note】
Some terms in this manual are different from those that used in our website or product brochures.
The brochure uses ordinary terms to help many people in various industries understand our products.
Expertise in CUnet family, please understand technical information based on technical documents
(manuals).

CUB-43PCI1 User's Manual

Revision history

Ver Date
Content

Page Description

Ver1.0E Feb, 2019 - Issued the first edition

Table of Contents

CUB-43PCI1 User's Manual

Chapter 1 Product Outline

Chapter 2 Hardware
2.1 Connector specifications.. 2-1
2.2 DIP switches... 2-2
2.3 Memory map.. 2-3
　2.3.1　MKY43.. 2-3
　2.3.2　Unique register of CUB-43PCI1... 2-4
2.4 External dimensions... 2-5

3.1 Outline.. 3-1
3.2 Copyright and disclaimer .. 3-1
3.3 File structure... 3-2
3.4 Restrictions... 3-2
　3.4.1　Multi-thread... 3-2
　3.4.2　Power saving mode... 3-2
　3.4.3　Interrupt handling... 3-3
　3.4.4　The access without StepTechnica-provided driver... 3-3
3.5 API specifications... 3-4
　3.5.1　CubGetVersion.. 3-5
　3.5.2　CubGetLastError.. 3-6
　3.5.3　CubCountDevice... 3-6
　3.5.4　CubBoardID... 3-7
　3.5.5　CubResetBoard... 3-7
　3.5.6　CubSearchBoard... 3-8
　3.5.7　CubOpenHandle... 3-9
　3.5.8　CubCloseHandle... 3-10
　3.5.9　CubReadByte.. 3-10
　3.5.10　CubWriteByte... 3-11
　3.5.11　CubReadWord.. 3-11
　3.5.12　CubWriteWord.. 3-12
　3.5.13　CubGetInt0Counter , CubGetInt1Counter.. 3-13
　3.5.14　CubClearInt0Counter , CubClearInt1Counter... 3-14
　3.5.15　CubGetInt0StatusInfo , CubGetInt1StatusInfo.. 3-15
　3.5.16　CubClearInt0StatusInfo , CubClearInt1StatusInfo... 3-17
3.6 Sample program.. 3-19
　3.6.1　Access sample to MKY43... 3-19
　3.6.2　Sample program of interrupt handling... 3-21

Chapter 3 Software

1.1 Features.. 1-1
1.2 Specifications.. 1-1

CUB-43PCI1 User's Manual

Figures

Tables
Table 1-1 Specifications.. 1-1
Table 2-1 Memory map.. 2-3
Table 3-1　API functions... 3-4
Table 3-2　Version numbering... 3-5
Table 3-3　Error code list.. 3-6
Table 3-4　Internal configuration of int0Info , int1Info... 3-16
Table 3-5　Interrupt factors to clear and its setting values.. 3-18

Fig. 2-1 Panel view.. 2-1
Fig. 2-2 Connector peripheral circuit.. 2-1
Fig. 2-3 Settings of CUB-43PCI board... 2-2
Fig. 2-4 External dimensions of CUB-43PCI1.. 2-5

Chapter 1 Product Outline

1-1

1.1 Features
CUB-43PCI1 is a PCI expansion bus supported CUnet communication board with MKY43 chip. This product is
designed to help easy operation of MKY43 functions with StepTechnica's API for Windows.

1.2 Specifications

Table 1-1 Specifications

Chapter 1 Product Outline
This chapter describes the product outline of CUB-43PCI1.

The specifications of CUB-43PCI1 are shown in Table 1-1.

CUnet device MKY43 × 1 pc

CUnet communication method Half-duplex

CUnet communication rate 12M/6M/3Mbps (Set by MKY43 register)

CUnet communication connector RJ45 type (8 pin modular) × 2pcs

Supported bus PCI Ver2.2 supported, 32bit / 33MHz expansion bus 5V / 3.3V
supported

Owned resource 16KB serial memory area (Automatically allocated by PnP)

Interrupt 1 line used (Automatically allocated by PnP)

Supported OS

Windows10 (64bit/32bit)
Windows8.1 (64bit/32bit)
Windows8 (64bit/32bit)
Windows7 (64bit/32bit)

Power supply DC +5.0V

Consumption current 500mA or less

Operating conditions Temperature 0 to 50℃　
Humidity 20 to 90% (with no condensation)

Storage conditions Temperature 0 to 80℃　
Humidity 0 to 90% (with no condensation)

Size 119.9mm(W) × 64.4mm(D)
 ※ Not including panel (Low Profile supported)

Accessory Low-profile panel

CUB-43PCI1 User's Manual

2-1

2.1 Connector specifications

Fig. 2-2 Connector peripheral circuit

The panel view and its details are shown in Fig.2-1.

Lights out
Lights out

MON (Green)
CHK1,2 (Yellow+Red)
Panel

Fig. 2-1 Panel view

CN2 / CN3 connector peripheral circuit is shown in Fig.2-2.

Pin# Function
4 TRX-
5 TRX+
8 Shield

1,2,3,6,7 Unused

MON
LED is connected to #MON pin of MKY43,
lit green when link is established with other CUnet stations.

LCARE
MCARE

Each LEDs are connected to #LCARE and #MCARE pin of MKY43.
Lit yellow when LCARE is occurring, lit red when MCARE is occurring
LEDs are lit red if LCARE and MCARE are occurring at the same time.

CN2、CN3
CUnet communication line
Commercial CAT-5 or more greater straight-through cable for 100BASE-TX can be used.

Panel

Panel is connected to a PC case front panel.
Connect a PC case to F.G. in accordance with the PC manual.
Metal shell of CN2 / CN3, and No.8 pin can be connected to the panel by making R33 PAD and
R43 PAD on the board shorted. (Refer to Fig.2-2, Fig.2-3.)

Chapter 2 Hardware
This chapter describes hardware of CUB-43PCI1.

Chapter 2 Hardware

2-2

2.2 DIP switches

Fig. 2-3 Settings of CUB-43PCI board

The settings of DIP switches of CUB-43PCI1 are shown in Fig.2-3.

If two or more CUB-43PCI1 devices are connected to one PC, set SW9 board IDs to individual number of each boards
so that you can distinguish the boards using software. (Factory setting board ID : 0)

When CUB-43PCI1 is at a termination of multi-drop connection (an end of network cable), set SW3 ON to enable
termination.
(Factory setting : Termination OFF)

CUB-43PCI1 User's Manual

2-3

2.3 Memory map
Table 2-1 describes memory map of CUB-43PCI1.
An address in memory map is the relative value from starting address of CUB-43PCI1, and actual address is the value
which is added the starting address of the board.

Table 2-1 Memory map

Address Description

000H ～ 5FFH MKY43

600H ～ EFFH Unused

F00H Chip Reset Register

F02H Board ID Register

F04H ～ FFFH Unused

For the details of memory map of MKY43, refer to "4.1.1 Memory map" in MKY43 User's Manual.

2.3.1　MKY43

Chapter 2 Hardware

2-4

2.3.2　Unique register of CUB-43PCI1

F00H and F02H registers shown in Table 1-2 Memory map are unique registers of CUB-43PCI1. The details of these
registers are described in the following.

Chip Reset Register　　Address：F00H

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R/W R R R R R R R R R R R R R R R W

Function -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- CRST

[Function] By writing "1" to CRST(Chip ReSet), reset signal can be applied to #RST pin of MKY43.
A reset term to #RST pin is 100ms. This register is write-only, so data will be undefined when reading
the register.

Board ID Register　　　Address：F02H

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R/W R R R R R R R R R R R R R R R R

Function -- -- -- -- -- -- -- -- -- -- -- -- -- -- BID1 BID0

[Function] The value of board ID set in SW9 can be acquired by reading BID0,1 (Board ID) bits.
For details, refer to "2.2 DIP switches".

Do not access to unused area ("600H to EFFH" , "F04H to FFFH")shown in Table 2-1 Memory map.
It can make a whole system unstable.

CUB-43PCI1 User's Manual

2-5

2.4 External dimensions

External dimensions of CUB-43PCI1 are shown in Fig.2-4.

Fig. 2-4 External dimensions of CUB-43PCI1

Chapter 3 Software

3-1

3.1 Outline

3.2 Copyright and disclaimer

Chapter 3 Software
This chapter describes API provided by StepTechnica.

StepTechnica provides API to optimize the access to CUB-43PCI1 from user application on Windows.
You can download the API from our website below.
URL：http://www.steptechnica.com/en/download/index.html
The supported operating systems are as follows.
・Windows 10　 (64bit/32bit)
・Windows 8.1　(64bit/32bit)
・Windows 8 　 (64bit/32bit)
・Windows 7　 (64bit/32bit)
Provided API can be called from Microsoft Visual Studio and VB6.

All documents, programs and program sources are belong to StepTechnica Co., Ltd.
The individuals, companies or other parties only who accept the cautions written below and use our CUB-43PCI1 are
licenced to copy or use of these works of StepTechnica Co., Ltd.
You can not be revised and re-distribution or duplication and use some or all of the work other than this product
without prior notice.

① StepTechnica Co., Ltd. assume no responsibility for any results caused by using the attached
driver disk or all software downloaded from our website.

② Use API in proper ways with its instructions.

③ All specifications and contents are subject to change without prior notice.
We do not guarantee for forward compatibility.

④ We can not support for an inquiry regarding operating systems and development
environment.

⑤ If you have found any errors and failures, contact our system R&D department.

The description in this manual is based on API version "1.0.0".
Please check the latest information on our website at using the product.

CUB-43PCI1 User's Manual

3-2

3.3 File structure
Files stored in "DLL" folder are the following.

【cub43pci1.dll】

DLL body :
Use this within Windows system folder or the same directory where the user program using this DLL
is stored.

【cub43pci1.lib】

Import library

【cub43pci1.h】

Header file for DLL : Include this after Windows.h.

3.4 Restrictions

This chapter describes the restrictions at building an application using this API.

API functions can not be used from other threads at the same time.
In the case that an application has multithreading structure, be sure not to be called from other thread at the same
time.

3.4.1　Multi-thread

CUB-43PCI1 does not support for power saving mode of PC.
Use the board after stop the sleeping function of OS. When the PC has gone into the sleep mode, the power supply
to MKY43 shuts down and the communication is stopped.
In addition, take care that each registers are initialized and GM, MSB, MRB0, MRB1 areas will be undefined state due
to resetting at recovering from power saving mode.

3.4.2　Power saving mode

Chapter 3 Software

3-3

INT0SR and INT1SR registers enable to check the status of interrupt occurrence of MKY43.
The internal driver has registers called interrupt factor register which retains the information in INT0SR and INT1SR
at interrupt occurrence and interrupt count register which retains the interrupt occurrence count of each INT0SR
and INT1SR.
The internal driver process the following procedure using these registers at interrupt occurrence.

（For instance, below describes when interrupt occurred at INT0.）

3.4.3　Interrupt handling

An API function is provided to acquire and clear the information from interrupt factor register and interrupt count
register.

① Set the interrupt factor information in interrupt factor register
（Previous interrupt factor remains until it is being cleared by interrupt factor register from user
application.）

② Increment the value of interrupt count register
③ Clear interrupt factor by writing "1" to the bit which is set "1" in 0-15bit of INT0SR

(1) Acquires the interrupt count from interrupt count register (CubGetInterrupt0Count ,
CubGetInterrupt1Count)
The internal driver retains interrupt count of each INT0, INT1 registers from MKY43.
This API function acquires the data from interrupt count register.

(2) Clears interrupt count register (CubClearInterrupt0Count, CubClearInterrupt1Count)
Clears the data of interrupt count register

(3) The internal driver retains interrupt factor of each INT0, INT1 registers from MKY43 in interrupt factor
register.
The data is acquired from interrupt factor register in this API function.

(4) Clear function of interrupt factor register (CubClearInterrupt0StatusInfo, CubClearInterrupt1StatusInfo)
Clears the specified interrupt factor from interrupt factor register

Check the interrupt factor and interrupt count from MKY43 using these functions in user application.

When you directly access to CUB-43PCI1 without StepTechnica-provided driver, note the following point.

3.4.4　The access without StepTechnica-provided driver

Always use 32bit-access to access CUB-43PCI1. At that time, lower 16 bit data will be used and upper 16 bit
will be unused.
For this reason, address to access needs to be specified 2 times longer than memory map mentioned above.
For example, in order to read 200H address of MKY43, make the lower 16bit in 400H of CUB-43PCI1 to acquire 2
bytes data in 200H of MKY43 by executing 32bit Read.
This access method applies to CUB-43PCI1 unique register.

CUB-43PCI1 User's Manual

3-4

3.5 API specifications

This chapter describes the API specifications.
The API functions are provided to optimize the operation of CUB-43PCI1 from user application.

Function Description

CubGetVersion Acquires API version number

CubGetLastError Acquires the termination status of API function

CubCountDevice Acquires the number of CUB-43PCI boards connected to PC

CubBoardID Acquires the board ID

CubResetBoard Resets the specified MKY43

CubSearchBoard Acquires the number of CUB-43PCI1 boards and its board IDs

CubOpenHandle Opens the handle of CUB-43PCI1

CubCloseHandle Closes the handle of CUB-43PCI1

CubReadByte Data read of 1 byte from the specified address

CubWriteByte Data write of 1 byte to the specified address

CubReadWord Data read of 2 bytes from the specified address

CubWriteWord Data write of 2 bytes to the specified address

CubGetInt0Counter
CubGetInt1Counter

Acquires the interrupt count of INT0, 1 retained in the internal driver

CubClearInt0Counter
CubClearInt1Counter

Clears the interrupt count of INT0, 1 retained in the internal driver

CubGetInt0StatusInfo
CubGetInt1StatusInfo

Acquires the interrupt factor of INT0, 1 retained in the internal

driver

CubClearInt0StatusInfo
CubClearInt1StatusInfo

Clears the specified interrupt factor from INT0, 1 interrupt factor

data retained in the internal driver

Table 3-1 API functions

The supported API functions are listed in Table 3-1.

Chapter 3 Software

3-5

3.5.1　CubGetVersion

Table 3-2 Version numbering
Return value

(Example)
Major Number
（Bit 15 - 8）

Minor Number
（Bit 7 - 4 ）

Update Number
（Bit 3 - 0）

0x0102 1 0 2

0x1398 13 9 8

Format
UINT CubGetVersion(void);

Function
Acquires the API version number

Parameter
None

Return value
API version number (Hexadecimal BCD code)
(Major Number + Minor Number + Update Number)

Error code
The error codes and error factors returned by CubGetLastError after executing this function is as follows.
CUB_SUCCESS Terminated normally

Note
Version numbering of API is shown in Table 3-2.
The reasons for updating the version number are as follows.

Major Number ：The revision with no backward compatibility such as API specification change.
Minor Number ：The revision with backward compatibility such as an addition of API function.
Update Number ：The revision with no specification change such as bug fixes.

CUB-43PCI1 User's Manual

3-6

3.5.2　CubGetLastError

Table 3-3 Error code list

Character constant Value Description

CUB_SUCCESS 0 Terminated normally

CUB_ERR_DEVICENOTEXIST 1 Device does not exist.

CUB_ERR_ALREADYOPENED 2 Handle has already opened.

CUB_ERR_CLOSED 3 CubOpenHandle has never been called.

CUB_ERR_INVALIDPARAM 4 Called with invalid parameter

CUB_ERR_NORESOUCE 5 No resource to execute the process

CUB_ERR_FAILED 6 The process failed due to unknown reason.

CUB_NOTCALLYET 99 API function has never been called.

Format
UINT CubGetLastError(void);

Function
Acquires the termination status of API function called last time

Parameter
None

Return value
Returns an error code defined in cub43pci1.h.

Note
The error codes defined by cub43pci1.h are shown in Table 3-3.

3.5.3　CubCountDevice

Format
INT CubCountDevice(void);

Function
Returns the number of CUB-43PCI1 devices connected to PC.

Parameter
None

Return value
Returns the number of CUB-43PCI devices connected to PC

-1 ： 5 or more
0 ： Not connected
1 ～ 4 ： 1 to 4 devices connected

Error code
The error code and error factor returned by CubGetLastError after executing CubGetLastError is as follows.

CUB_SUCCESS Terminated normally

Note
More than 5 devices cannot be connected to a PC.

Chapter 3 Software

3-7

3.5.4　CubBoardID

Format
INT CubBoardID(HANDLE CUBHandle);

Function
Acquires the board IDs of CUB-43PCI1.

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1

Return value
Succeeded : The board ID (0 to 3) is returned. Failed : -1 is returned.

Error code
The error codes and error factors returned by CubGet LastError are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value
CUB_ERR_FAILED The process failed due to unknown reason.

3.5.5　CubResetBoard

Format
BOOL CubResetBoard (HANDLE CUBHandle);

Function
Resets MKY43

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE (0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.

CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value
CUB_ERR_FAILED The process failed due to unknown reason.

Addendum
To access MKY43, wait 100ms or longer after resetting

CUB-43PCI1 User's Manual

3-8

3.5.6　CubSearchBoard

Format
BOOL CubSearchBoard(BYTE *board_num , BYTE *board_id_list);

Function
Returns the number of CUB-43PCI1 devices connected to PC and its board ID list.

Parameter
*board_num Specify an address to byte-type variable to which the number of

boards are set.
The descriptions of set value are the following.

・-1 ： Five or more
・0 ： Not connected
・1 ～ 4 ： Number of boards identified

*board_id_list To receive the board ID, specify a ponter which has an array of four
elements of byte-type. It is also possible to specify NULL.
If NULL has been specified, only the number of boards are returned.
The descriptions of set value are the following.

・0x00 ～ 0x03 ： Board ID
・0xFF ： Not identified

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM NULL has been specified to *board_num
CUB_ERR_FAILED The process failed due to unknown reason.

Addendum
Board ID is set by SW9.
If two or more CUB-43PCI1 devices are connected to a PC, you can distinguish them by its board IDs.
IN this API, you can distinguish up to four CUB-43PCI1 boards.
Specify the byte-type array as a parameter as shown below.

　BYTE board_num;
　BYTE board_id_list[4];
　CubSearchBoard(&board_num, &board_id_list[0]);

As an example, three CUB-43PCI1 boards are connected to a PC, and each board IDs are set in
sequence ;
 1st board ID = 0, 2nd board ID = 1, 3rd board ID = 2
If the boards have been identified by the PC in sequence with first, third, and second, and run
CubSearchBoard, board number and its IDs are returned as follows.

board_num = 3;
board_id_list [0] = 0, board_id_list [1] = 2, board_id_list [2] = 1, board_id_list [3] = 0xFF

Chapter 3 Software

3-9

3.5.7　CubOpenHandle

Format
HANDLE CubOpenHandle(int index_no);

Function
Opens the handle of CUB-43PCI1

Parameter
int index_no Index number

0 to 3 can be specified as an index number.
If only one CUB-43PCI1 is connected, set '0'.
For details, refer to "Addendum".

Return value
Succeeded : 1 or more value is returned. Failed : -1 (INVALID_HANDLE_VALUE) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_DEVICENOTEXIST Device does not exist.
CUB_ERR_FAILED The process failed due to unknown reason.

Addendum
CIf only one CUB-43PCI1 board is connected, it's not necessary to execute CUBSearchBoard.
If two or more CUB-43PCI1 boards are connected to a PC, execute "CubSearchBoard" to check which
CUB-43PCI1 to manipulate.
As an example, three CUB-43PCI1 boards are connected to a PC, and each board IDs are set in
sequence ;
1st board ID = 0, 2nd board ID = 1, 3rd board ID = 2.To acquire the handle value of board ID=2,
execute the following.

BYTE board_num;
BYTE board_id_list[4];
CubSearchBoard(&board_num, &board_id_list[0]);

Assuming that the results of executing in the above was the following.

board_id_list[0]=0, board_id_list[1]=2, board_id_list[2]=1, board_id_list[3]=0xFF

In this case, you see that index number 1 is the board ID=2.
That means 1 is the index number, the parameter of CubOpenHandle.
Close the handle with CubCloseHandle at finishing the program.

CUB-43PCI1 User's Manual

3-10

3.5.8　CubCloseHandle

Format
BOOL CubCloseHandle(HANDLE CUBHandle);

Function
Closes the handle which is acquired by CubOpenHandle

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1

Return value
Succeeded : TRUE(1) is returned.Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value
CUB_ERR_FAILED The process failed due to unknown reason.

3.5.9　CubReadByte

Format
BOOL CubReadByte(HANDLE CUBHandle,const ULONG Adr,BYTE *Dat);

Function
Reads 1 byte data from the specified address

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1
const ULONG Adr Address value

Input condition is the following.
 ・Input range : 0x0000 to 0x0FFE

BYTE *Dat The storage address of read data

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value

Adr is out of range.
*NULL has been specified to *Dat.

CUB_ERR_FAILED The process failed due to unknown reason.

Chapter 3 Software

3-11

3.5.10　CubWriteByte

Format
BOOL CubWriteByte(HANDLE CUBHandle, const ULONG Adr, const BYTE Dat);

Function
Writes 1 byte data to the specified address

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1
const ULONG Adr Address value

Input condition is the following.
・Input range : 0x0000 to 0x0FFE

const WORD Dat Write data

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value

Adr is out of range.
CUB_ERR_FAILED The process failed due to unknown reason.

3.5.11　CubReadWord

Format
BOOL CubReadWord(HANDLE CUBHandle,const ULONG Adr,WORD *Dat);

Function
Reads 2 bytes data from the specified address.

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1
const ULONG Adr Address value

Input condition is the following.
・Multiples of 2
・Input range : 0x0000 to 0x0FFE

WORD *Dat The storage address of read data

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value

Adr is out of range.
Adr is not a multiple of 2.
NULL has been specified to *Dat.

CUB_ERR_FAILED The process failed due to unknown reason.

CUB-43PCI1 User's Manual

3-12

3.5.12　CubWriteWord

Format
BOOL CubWriteWord(HANDLE CUBHandle, const ULONG Adr, const WORD Dat);

Function
Writes 2 bytes data to the specified address

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1
const ULONG Adr Address value

Input condition is the following.
・Multiples of 2
・Input range : 0x0000 to 0x0FFE

const WORD Dat Write data

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value

Adr is out of range.
Adr is not a multiple of 2.

CUB_ERR_FAILED The process failed due to unknown reason.

Chapter 3 Software

3-13

3.5.13　CubGetInt0Counter , CubGetInt1Counter

Format
BOOL CubGetInt0Counter(HANDLE CUBHandle, BYTE *int0Counter);
BOOL CubGetInt1Counter(HANDLE CUBHandle, BYTE *int1Counter);

Function
Acquires the data of INT0, 1 interrupt count register retained by internal driver.
Interrupt count increments from 0 to 255 (0xFF) and returns to 0.

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1
BYTE *int0Counter、int1Counter The storage address of interrupt count

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value

NULL has been specified to *int0Counter, *int1Counter.
CUB_ERR_FAILED The process failed due to unknown reason.

CUB-43PCI1 User's Manual

3-14

3.5.14　CubClearInt0Counter , CubClearInt1Counter

Format
BOOL CubClearInt0Counter (HANDLE CUBHandle);
BOOL CubClearInt1Counter (HANDLE CUBHandle);

Function
Clears the data of INT0, INT1 interrupt counter register retained by internal driver

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value
CUB_ERR_FAILED The process failed due to unknown reason.

Chapter 3 Software

3-15

3.5.15　CubGetInt0StatusInfo , CubGetInt1StatusInfo

Format
BOOL CubGetInt0StatusInfo (HANDLE CUBHandle,WORD *int0Info)
BOOL CubGetInt1StatusInfo (HANDLE CUBHandle,WORD *int1Info)

Function
Acquires the data of INT0, 1 interrupt factor retained by internal driver

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1
WORD * int0Info,*int1Info The storage address of interrupt factor

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value

NULL has been specified to *int0Info, *int1Info.

CUB_ERR_FAILED The process failed due to unknown reason.

Note
The configuration of parameter set to int0Info, int1Info are described in Table 3-4.

If the interrupt has occurred, "1" is set to the bit corresponding to interrupt factor.

The arrangement of interrupt factors equals to INT0SR, INT1SR of MKY43.

CUB-43PCI1 User's Manual

3-16

bit Interrupt factor

15 Interrupt by jammer detect

14 Interrupt by receiving of PING instruction

13 Interrupt by resize overlap

12 Interrupt by receiving break packet

11 Interrupt by "Link NG" judgement

10 Interrupt by "Link OK" judgement

9 Interrupt by increasing and decreasing of MFR bits to which "1" is set

8 Interrupt by entering RUN phase

7 Interrupt by network stop

6 Interrupt by resize complete

5 Interrupt by MGR > MFR judgement

4 Interrupt by MGR ≠ MFR judgement

3 Interrupt by finishing mail sending

2 Interrupt by finishing mail receiving

1 Interrupt by data renewal

0 Interrupt by ALM

Table 3-4 Internal configuration of int0Info , int1Info

Chapter 3 Software

3-17

3.5.16　CubClearInt0StatusInfo , CubClearInt1StatusInfo

Format
BOOL CubClearInt0StatusInfo (HANDLE CUBHandle, WORD clearInt0Info);
BOOL CubClearInt1StatusInfo (HANDLE CUBHandle, WORD clearInt0Info);

Function
Clears the specified interrupt factor from INT0, INT1 interrupt factor data retained by internal driver

Parameter
HANDLE CUBHandle The handle value of CUB-43PCI1
WORD clearInt0Info、clearInt0Info Specifies the cleared interrupt factor

Return value
Succeeded : TRUE(1) is returned. Failed : FALSE(0) is returned.

Error code
The error codes and error factors returned by CubGetLastError after executing this function are as follows.
CUB_SUCCESS Terminated normally
CUB_ERR_INVALIDPARAM Invalid handle value
CUB_ERR_FAILED The process failed due to unknown reason.

Note
Interrupt factors and its setting values are shown in Table 3-5.

Set the setting value which are corresponded to each interrupt factors to clearInt0Info, clearInt1Info.

Set the logical or of each setting values to clear multiple interrupt factors.

CUB-43PCI1 User's Manual

3-18

Interrupt factor Setting value

Clear the interrupt by Jammer detect 0x8000

Clear the interrupt by receiving PING instruction 0x4000

Clear the interrupt by occurrence of resize overlap 0x2000

Clear the interrupt by receiving BREAK packet 0x1000

Clear the interrupt by "Link NG" judgement 0x0800

Clear the interrupt by "Link OK" judgement 0x0400

Clears the interrupt by increasing and decreasing of MFR bits to which are set "1" 0x0200

Clears the interrupt by entering RUN phase 0x0100

Clears the interrupt by network stop 0x0080

Clear the interrupt by finishing resizing 0x0040

Clear the interrupt by MGR > MFR judgement 0x0020

Clear the interrupt by MGR ≠ MFR judgement 0x0010

Clear the interrupt by finishing mail sending 0x0008

Clear the interrupt by finishing mail receiving 0x0004

Clear the interrupt by data renewal 0x0002

Clear the interrupt by ALM 0x0001

Table 3-5 Interrupt factors to clear and its setting values

Chapter 3 Software

3-19

3.6 Sample program

The sample program that works for initializing MKY43, setting CUnet communication mode, acquiring the value of
global memory with this API is described in the following.

3.6.1　Access sample to MKY43

int main(int argc, char *argv[])
{
 HANDLE CUBHandle;
 WORD mky43_scr;
 WORD sa1_gm[4];
 WORD sa63_gm[4];
 int i;
 UINT api_version;

 /** Checking the version of API */
 api_version = CubGetVersion();
 if (api_version < 0x100 || api_version > 0x199) {
 printf(" This version of cub43pci1.dll is not compatible.\n");
 exit(1);
 }

 /** Generating handle */
 CUBHandle = CubOpenHandle(0);
 if (CUBHandle == INVALID_HANDLE_VALUE) {
 exit(1);
 }

 /** Initializing MKY43 */
 // (1) Write 0x00 to 0x000 to 0x2FF(GM + MSB) in memory map
 for (i=0;i<0x300;i+=2) {
 CubWriteWord(CUBHandle, i, 0);
 }

 // (2) Write 0x00 to 0x400 to 0x5FF(MRB0 + MRB1) in memory map
 for (i=0x400;i<0x600;i+=2) {
 CubWriteWord(CUBHandle, i, 0);
 }

 // (3) Set communication mode
 // (3-1) Set GMM function ON to write to BCR
 CubWriteWord(CUBHandle, 0x366, 0x8000);
 // (3-2) Set the network condition to BCR
 // Set BCR as follows in this sample program: SA=0, OWN=1, BPS=6Mbps
 CubWriteWord(CUBHandle, 0x356, 0x0180);
 // (3-3) GMM function OFF
 CubWriteWord(CUBHandle, 0x366, 0x0000);

CUB-43PCI1 User's Manual

3-20

 /** Start CUnet */
 CubWriteWord(CUBHandle, 0x366, 0x0100);

 /** In this sample program, executing data read of SA1 SA63 global memory assuming that the link is
established between two CUnet station (SA1 and SA63) other than CUB-43PCI1.
 */
 while(1) {
 /** Checking the state of CUnet network*/
 CubReadWord(CUBHandle, 0x366, &mky43_scr);
 if ((mky43_scr&0x0100)==0) {
 CubWriteWord(CUBHandle, 0x366, 0x0100); // Restart if network has been stopping

 }
 // Read global memory of SA1
 CubReadWord(CUBHandle, 0x0008, &sa1_gm[0]);
 CubReadWord(CUBHandle, 0x000A, &sa1_gm[1]);
 CubReadWord(CUBHandle, 0x000C, &sa1_gm[2]);
 CubReadWord(CUBHandle, 0x000E, &sa1_gm[3]);
 // Read global memory of SA63
 CubReadWord(CUBHandle, 0x01f8, &sa63_gm[0]);
 CubReadWord(CUBHandle, 0x01fA, &sa63_gm[1]);
 CubReadWord(CUBHandle, 0x01fC, &sa63_gm[2]);
 CubReadWord(CUBHandle, 0x01fE, &sa63_gm[3]);
 }
 /* Close the generated handle */
 CubCloseHandle(CUBHandle);
 return 0;
}

Chapter 3 Software

3-21

This chapter describes the sample program to check the setting and occurrence of interrupt to MKY43 using this API.

3.6.2　Sample program of interrupt handling

int main(int argc, char *argv[])
{
 HANDLE CUBHandle;
 BYTE int0_current_numOfOccurr;		 // Current INT0 interrupt count
 BYTE int0_lastTime_numOfOccurr;		 // Previous INT0 interrupt count
 WORD int0_factor;					 // INT0 interrupt factor

 /* Generating the handle */
 CUBHandle = CubOpenHandle(0);
 /* Checking the generated handle */
 if (CUBHandle == INVALID_HANDLE_VALUE) {
 	 exit(1);
 }

 // MKY43 START = 0
 CubWriteWord(CUBHandle, 0x366, 0x0000);

 /* Clear the interrupt factor register */
 CubClearInt0StatusInfo(CUBHandle, 0xffff);

 /* Clear the interrupt count register */
 CubClearInt0Counter(CUBHandle);
 int0_lastTime_numOfOccurr = 0; // Interrupt count : 0

 /* Set the interrupt factor. INT0 interrupt is occurred at network stopping. */
 CubWriteWord(CUBHandle, 0x358, 0x0080);

 /* Network start instruction*/
 CubWriteWord(CUBHandle, 0x366, 0x0100);

 while (1) {
 /* Acquire the data of interrupt count register */
 CubGetInt0Counter(CUBHandle, &int0_current_numOfOccurr);
 /* Interrupt is occurring if the count is not equal to the previous interrupt count. */
 if (int0_lastTime_numOfOccurr != int0_current_numOfOccurr) {
 /* Copy the current value to the previous value */
 int0_lastTime_numOfOccurr = int0_current_numOfOccurr;
 /* Acquire the data of interrupt factor register*/
 CubGetInt0StatusInfo(CUBHandle, &int0_factor);
 /* Confirm that the interrupt factor is CHECK-1 or not */
 if ((int0_factor & 0x0080) == 0x0080) {
 /* ---The process when the network stop has been occurred is described here. --- */
 /*Clear INT0 interrupt factor register*/
 CubClearInt0StatusInfo(CUBHandle, 0x0080);
 }
 }
 }
 /*Close the generated handle*/
 CubCloseHandle(CUBHandle);

 return 0;
}

■ Developed and manufactured by

StepTechnica Co., Ltd.
757-3, Shimofujisawa, Iruma, Saitama

http://www.steptechnica.com/en/index.html
info@steptechnica.com

CUnet (MKY43) PCI board
CUB-43PCI1

User's Manual

Document No.：STD_CUB43PCI1_V1.0E
Issued : February 2019

	TOP Page
	Note
	Preface
	Revision history
	Contents
	Chapter 1 Product Outline
	1.1 Features
	1.2 Specifications
	Chapter 2 Hardware
	2.1 Connector specifications
	2.2 DIP switches
	2.3 Memory map
	2.3.1　MKY43
	2.3.2　Unique register of CUB-43PCI1

	2.4 External dimensions
	Chapter 3 Software
	3.1 Outline
	3.2 Copyright and disclaimer
	3.3 File structure
	3.4 Restrictions
	3.4.1　Multi-thread
	3.4.2　Power saving mode
	3.4.3　Interrupt handling
	3.4.4　The access without StepTechnica-provided driver

	3.5 API specifications
	3.5.1　CubGetVersion
	3.5.2　CubGetLastError
	3.5.3　CubCountDevice
	3.5.4　CubBoardID
	3.5.5　CubResetBoard
	3.5.6　CubSearchBoard
	3.5.7　CubOpenHandle
	3.5.8　CubCloseHandle
	3.5.9　CubReadByte
	3.5.10　CubWriteByte
	3.5.11　CubReadWord
	3.5.12　CubWriteWord
	3.5.13　CubGetInt0Counter , CubGetInt1Counter
	3.5.14　CubClearInt0Counter , CubClearInt1Counter
	3.5.15　CubGetInt0StatusInfo , CubGetInt1StatusInfo
	3.5.16　CubClearInt0StatusInfo , CubClearInt1StatusInfo

	3.6 Sample program
	3.6.1　Access sample to MKY43
	3.6.2　Sample program of interrupt handling

	Fig. 2-1 Panel view
	Fig. 2-2 Connector peripheral circuit
	Fig. 2-3 Settings of CUB-43PCI board
	Fig. 2-4 External dimensions of CUB-43PCI1
	Table 1-1 Specifications
	Table 2-1 Memory map
	Table 3-1 API functions
	Table 3-2 Version numbering
	Table 3-3 Error code list
	Table 3-4 Internal configuration of int0Info , int1Info
	Table 3-5 Interrupt factors to clear and its setting values

