High noise immunity Long distance Built-in protocols Super-fast

Remote I/O Control Network IC

SEMI Standard E54.17 compliant

Two open-field network IC families optimized for internal network of FA device

MKY36

MKY43

Data sharing and remote I/O control

MKY44-AD12A MKY44

Step Technica meets the challenge of developing products not previously available.

STEPECHNICA StepTechnica Co., Ltd. https://www.steptechnica.com

Sales agent

Pionics PIONICS Co., Ltd. https://www.pionics.co.jp

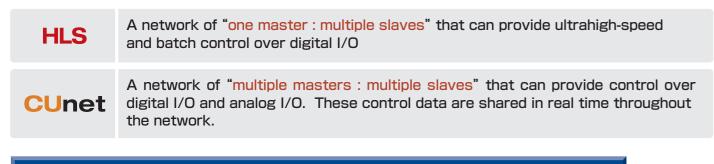
For further information, contact

2024-4.3F

Wiring saving

Simple and super-fast digital I/O batch control !

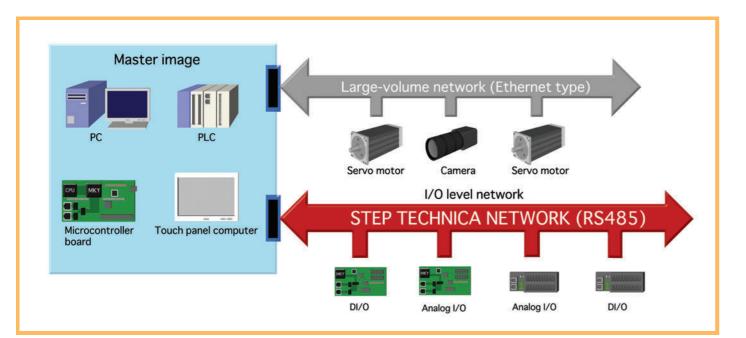
Easy remote control of digital I/O and analog I/O. All data is shared by all devices.



Control network to enable all advanced fun ctions simultaneously

Open-field networks (HLS and CUnet) address various needs of customers from simple ICs to boards or units What are **HLS** and **CUnet**? Image of HLS and CUnet : One-line configuration

HLS and CUnet are I/O level networks specific to high-speed control of I/O (sensor and motor) in FA devices


Image of HLS and CUnet : Two-line configuration

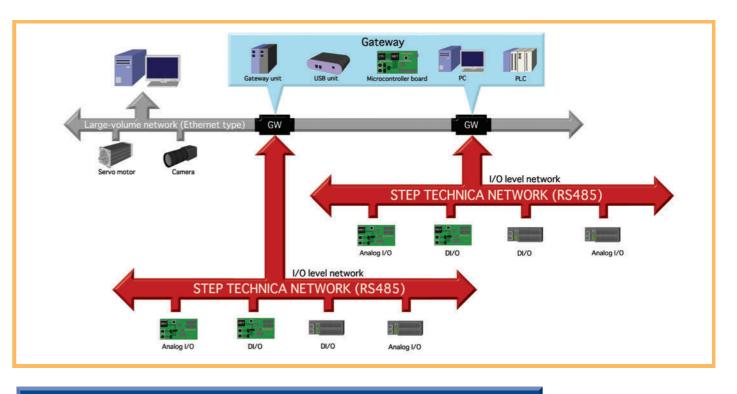
A mass network and an I/O network are used parallel.

If you build your network only with large-volume network such as Ethernet, not only the cost but also the load of user CPU and application software will become heavy. Also, it will become difficult to control I/O with accurate cycle.

Therefore, Step Technica proposes two-line network configuration as follows.

- Ethernet-type networks are used for large-volume data required to control servo motors and images
- In addition, networks with high tolerance for noise based on RS485 (field bus) are used for I/O control

As shown above, by building large-volume data line and I/O line individually (two-line),


High-speed

can be achieved within the network.

Connectable through the gateway to the backbone network of Ethernet-base

Control networks composed only of Ethernet-based networking often have problems with cost, stability, real-time I/O control, and I/O device expansion. To solve these problems, Step Technica proposes the use of gateways for HLS and CUnet.

These gateways are recognized as I/O memory on the backbone network, so there is no need to adjust the overall network or drastically change the master program. This makes it easy to expand I/O and to adapt to a variety of device specifications.

The advantages of using HLS and CUnet on I/O level network

HLS and CUnet which can realize high-speed response easily HLS and CUnet are highly valued by various customers using semiconductor manufacturing devices and machine tools that require high noise immunity, long distance, and high-speed response.

Cost saving	Enabling configu
Few load on user CPU	HLS and CUnet
Stable communication	Packet data am
Configuring an optimal network for the system required by customers	Two-line connec network are ava
Extension of control target on I/O network	Even the device can be controlle

guration of the network with I/O devices of appropriate bit number

communicate independently without user CPU (built-in protocol.)

nount on I/O network is small and has high tolerance for noise

ction with controller and gateway connection with large-volume ailable.

es conventionally controlled in upper level such as motor control

Common features of **HLS** and **CUnet**

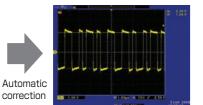
Four high efficiency is realized simultaneously !

Accelerating response time by High speed

Step Technica's network can robustly and quickly control small data (bit data) including I/O that is required to control FA devices. Protocol specification designed not for transmission rate but for substantial response speed of each slave allows communication at the maximum speed of 15 μ s per node although it is RS485-base network.

Zero communication burdens **Built-in protocol**

Since Step Technica's network IC has built-in communication protocol, customers do not need to develop communication software. User CPU has no communication burden because network ICs in this network automatically communicate each other. Also, user CPU can control only by master IC-memory read and write. This will allow simple high-reliability communications and reduce the burden of application software development.


100% guaranteed data Automatic waveform correction

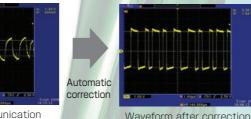
Step Technica's network IC is always correcting the waveform automatically for received data. They also determine if the corrected data comply with the specified format. This will help to ensure the received data as "100% correct data" without data corruption.

High noise immunity

Even if the transmission waveform is broken due to being affected by various noises from the environment. "Automatic Waveform Correction Function" corrects the waveform, realizing the high noise immunity.

Waveform including noise

Waveform after correction


No scan time gap by **Constant-cycle** communication

scan method so that response speed does not change at all. The turnaround time given to each terminal on the network is fixed. Therefore, the turnaround time for a scan depends on the number of terminals on the network. If a communication error occurs, the error data is discarded and retry is not executed. Thanks to the built-in ultrahigh-speed communication and automatic waveform correction functions, the correct data can be obtained at the next scan without retry.

Step Technica's network adopts constant-cycle

Long distance

Even if the transmission waveform is broken due to long-distance communication (as shown in the diagram), "Automatic Waveform Correction Function" corrects the waveform, realizing the long-distance communication.

M: Maste S: Slave T: Time

When communication distance is 300 m

Actual installation and application examples of HLS and CUnet

and space.

HLS

HLS is widely used for various systems in FA field.

Solutions to annoying network problems

- Chip mounters
- Semiconductor manufacturing Medical equipment equipment
- Injection molding machines
- I arge printers
- Automatic carrier robots
- Welding machines
- Pachinko hall control systems NC machine tools Security control systems
- Amusement park control systems RFID systems
- Warehouse management system

Traffic information control systems

Electrical discharge machines Building management system

Train traffic control system

(road signal)

CUnet

CUnet is used in a wide range of businesses requiring control by real-time parallel processing.

- Chip mounters Multi-axis motion controller Building access control systems Semiconductor manufacturing equipment Large printers Wafer carrier devices
- LCD panel carrier device
- Parking management systems
- Industrial robots

- Humanoid robots
- (entrance/exit) Baggage sorting system
- RFID systems
- Golf driving range system
- Fireworks launch system
- Medical equipment
- Platform door

Ultrahigh response speed for more control

Long-distance connection with ultrahigh-speed kept

Built-in protocols enable simple program development.

Wiring saving (by serial connection) helps reduce the cost, maintenance activities,

High noise immunity solves problems of unstable communications caused by noise.

HLS and CUnet are user-friendly FA-dedicated control network ICs.

Ultrahigh-speed I/O Control SEMI standard compliant

Hi-speed Link System family

"1:N" Ultrahigh-speed, high-reliability, open-field network

Connecting "up to 63 slave ICs" to "one master IC" supports a network for controlling remote I/Os at ultrahigh-speed

Flexible combinations

Up to 63 slave ICs (MKY37) can be connected to one master IC (MKY36).

Series name	Master (center) IC	Slave (satellite) IC	HUB-IC
Туре	МКҮЗб	MKY37	MKY02
Package		Strows a MKY 37 Robert	
Number of I/O	-	16 DIN 16 DOUT	-
Operating voltage	3.3 V (5 V tolerant)	5.0 V	3.3 V (5 V tolerant)
Features	16/8 bit bus Interface support	No CPU needed Basic model Low power consumption	No CPU needed T-type branching and wiring extension possible

HLS specifications

Communication method HLS (Hi-speed Link System) Master/slave type polling method Connection type Multi-drop method (RS485) Communication speed 12 Mbps/6 Mbps/3 Mbps (full-duplex/half-duplex) Communication cable Shield cable of category 3 or higher Maximum number of connection node 63 nodes Number of I/O control 1 terminal :16 IN, 16 OUT 63 terminals :1008 IN, 1008 OUT Communication distance Maximum length of network 12 Mbps 100 m				
Communication speed 12 Mbps/6 Mbps/3 Mbps (full-duplex/half-duplex) Communication cable Shield cable of category 3 or higher Maximum number of connection node 63 nodes Number of I/O control 1 terminal :16 IN, 16 OUT 63 terminals :1008 IN, 1008 OUT Communication Communication distance Maximum length of network Communication 12 Mbps 100 m	Communication method			
Communication cable Shield cable of category 3 or higher Maximum number of connection node 63 nodes Number of I/O control 1 terminal :16 IN, 16 OUT 63 terminals :1008 IN, 1008 OUT Communication Communication distance Maximum length of network 12 Mbps 100 m 100 m	Connection type	Multi-drop method (RS485	5)	
Maximum number of connection node 63 nodes Number of I/O control 1 terminal :16 IN, 16 OUT 63 terminals :1008 IN, 1008 OUT Communication 12 Mbps 100 m	Communication speed	12 Mbps/6 Mbps/3 Mbps	(full-duplex/half-duplex)	
Connection node 63 nodes Number of I/O control 1 terminal :16 IN, 16 OUT 63 terminals :1008 IN, 1008 OUT Communication Communication distance Maximum length of network 12 Mbps 100 m	Communication cable	Shield cable of category 3	or higher	
Number of I/O control 63 terminals :1008 IN, 1008 OUT Communication Communication distance Maximum length of network 12 Mbps 100 m		63 nodes		
Communication 12 Mbps 100 m	Number of I/O control			
Continuitication		Communication distance	Maximum length of network	
		12 Mbps	100 m	
6 Mbps 200 m	uistance	6 Mbps	200 m	
3 Mbps 300 m		3 Mbps	300 m	
Topology Bus (at using HUB : tree/star)	Topology	Bus (at using HUB : tree/star)		

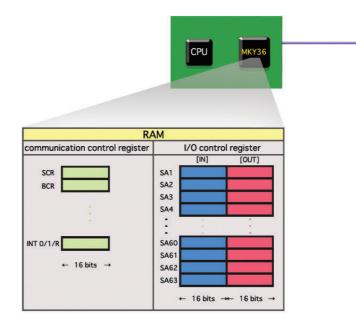
(The Communication distance described above is just for a scale. It varies from system requirements and environment.)

Response speed (in full-duplex communication)

			,
	12 Mbps	6 Mbps	3 Mbps
2 nodes	30.33 µs	60.67 µs	121.33 µs
8 nodes	121.33 µs	242.67 µs	485.33 µs
16 nodes	242.67 μs	485.33 µs	970.67 μs
32 nodes	485.33 μs	970.67 µs	1941.33 µs
63 nodes	955.50 µs	1911.00 µs	3822.00 μs

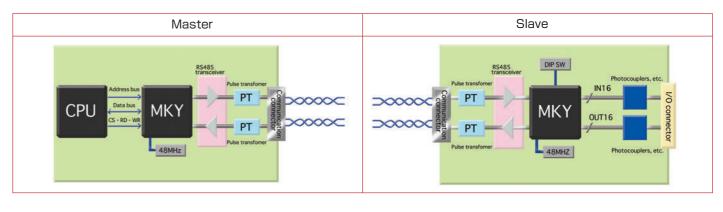
(Approximately twice the described value in half-duplex communication)

Communication distance when using HUB


	12 Mbps	6 Mbps	3 Mbps
HUB 1	200 m	400 m	600 m
HUB 2	300 m	600 m	900 m
HUB 3	400 m	800 m	1200 m
HUB 4	500 m	1000 m	1500 m
HUB 5	600 m	1200 m	1800 m
HUB 6	700 m	1400 m	2100 m
HUB 7	800 m	1600 m	2400 m

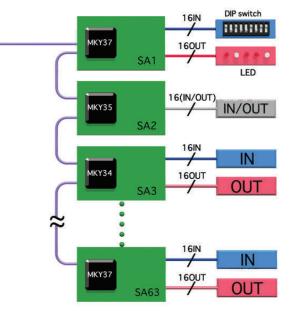
(For the response speed when using HUB, refer to MKYO2 Manual.)

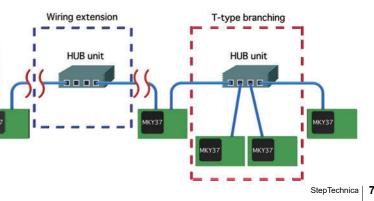
HLS network configuration diagram


HLS is a remote I/O control network of "one master and multiple slaves". Master and slave ICs communicate automatically with each other and the system can connect up to 63 slave ICs. Although multi-drop wiring using RS485 is utilized for the connection, branching and wiring extension are also possible by using HUB-IC (MKY02).

In master IC, there is a memory area corresponding to each slave IC. This memory area is composed of communication status, interruption, communication control register for communication error, and I/O control register. CPU can control I/O connected to each slave IC just by reading or writing the memory of master IC.

Board block diagram


The figure below is a typical block diagram of HLS board while in full-duplex. As shown in the diagram, the board can be configured with simple circuit.



Wiring extension and T-type branching

HLS is a network configured with multi-drop connection (RS485). To extend the network, T-type branching wiring and wiring extension are possible by using HUB-IC (MKYO2) for HLS.

Data (memory) sharing and I/O control SEMI standard compliant

CUnet family

"N:N"next-generation open-field network

Multi-master type network that can control digital I/O and analog I/O. The maximum 512-byte control data can be shared automatically among all **CUnet ICs.**

Flexible combinations

CUnet family is composed of "MEM mode IC", which can function as a master or slave IC connected to CPU, and "IO mode IC", which can control digital I/O and analog I/O. A network can be configured by freely combining these ICs. Also, combination of "Master:Slave" can be selected freely from "1:N" to "N:N".

Series name	MEM mode IC (master/slave)	MEM mode IC (master/slave)	IO mode IC (DIO slave)	IO mode IC (DIO slave)	IO mode IC (AD slave)
Туре	MKY43	MKY44-SPI	MKY46	MKY44-1032A	MKY44-AD12A
Package	Stowas MKY43 Andreas	5760004 MKY44.589 19592003	Stephica MKY46	Stewars WWY44	STEwarts MXY44 A022A 01 1969-0007
Function	Data (memory) sharing	Data (memory) sharing	32 DIN/DOUT	32 DIN/DOUT with filter 2 ch 24 bit up/down counter 2 ch 16 bit PWM output	12 bit AD 4ch 4 DIN/4 DOUT
Operating voltage	3.3 V (5 V tolerant)	3.3 V	5.0 V	3.3 V	3.3 V
Features	Support mail function (256-byte data transmission) Support 16/8 bit bus interface.	Support mail function (256-byte data transmission) SPI communication interface supported (Max 1 Mbps)	No CPU is required 32 DIN/DOUT switchable in 4 bits	No CPU is required 32 DIN/DOUT switchable in 8 bits ST44SW: Required	No CPU is required Built-in AD converter ST44SW: Unrequired

Series name	IO mode IC (AD slave)	IO mode IC (AD slave)	IO mode IC (DA slave)	IO mode IC (DA slave)	HUB-IC
Туре	MKY44-AD16A	MKY44-AD16B	MKY44-DA16A	MKY44-DA16B	MKY02
Package	SPEcon MKX44 A0/6A 01 - 150/00077	5760000 MXY44 0.0508.01	SPEcure DATASA OT UNINGRATION	5976-000 MKX544 0.1/08.01	SFlower WKY02 Articlean
Function	16 bit AD 2ch 8DIN/8DOUT	16 bit AD 4ch	16 bit DA 2ch 8 DIN/8 DOUT	16 bit DA 4ch	-
Operating voltage	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V (5 V tolerant)
Features	No CPU is required External AD converter (AD7682) ST44SW: Required	No CPU is required External AD converter (AD7682) ST44SW: Unrequired	No CPU is required External DA converter (AD5752) ST44SW: Required	No CPU is required External DA converter (AD5754) ST44SW: Unrequired	No CPU is required T-type branching and wiring extension possible

* The ST44SW is an IC for switch expansion for communication settings when using the MKY44.

CUnet specifications

Communication method	CUnet communiation, multi-master type broadcast method		
Connection type	Multi-drop method (RS485)		
Communication speed	12 Mbps/6 Mbps/3 Mbps (I	nalf-duplex)	
Communication cable	Shield cable of category 5 or higher		
Maximum number of connection node	64 nodes		
Data sharing amount	1 node: 8 bytes unit, 64 nodes MAX.: 512 bytes		
	Communication distance	Maximum length of network	
Communication	12 Mbps	100 m	
distance	6 Mbps 200 m		
	3 Mbps	300 m	
Topology	Bus (at using HUB: tree/star)		

Note: The communication distance above are approximate data, it may vary on its operating conditions

Response speed

	12 Mbps	6 Mbps	3 Mbps
2 nodes	102.00 µs	204.00 µs	408.00 µs
8 nodes	265.00 µs	530.00 µs	1060.00 µs
16 nodes	501.00 μs	1002.00 µs	2004.00 µs
32 nodes	1037.00 µs	2074.00 µs	4148.00 µs
64 nodes	2365.00 µs	4730.00 μs	9460.00 µs

Note: The above response speed is only when a self-owned area of one node is 8 bytes. The nodes of CUnet means "The number of memory block used in the whole network (self-owned area)", NOT "The number of actual terminals."

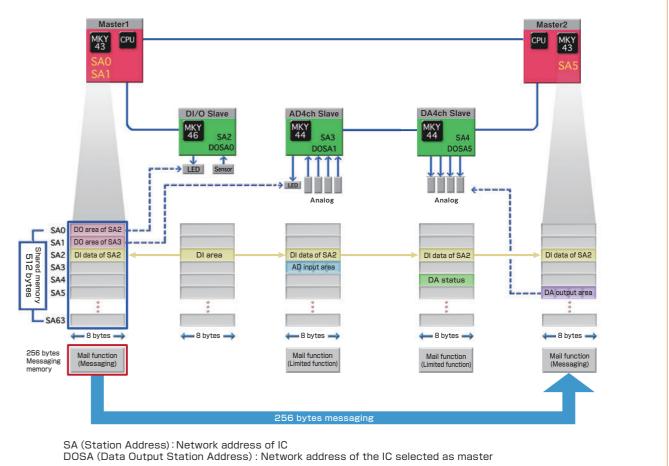
Communication distance when using HLIR

	12 Mbps	6 Mbps	3 Mbps	
HUB 1	200 m	400 m	600 m	
HUB 2	300 m	600 m	900 m	

Note: For the response speed when using HUB, refer to MKYO2 Manual.

CUnet network configuration diagram

CUnet ICs communicate (share data) automatically with each other without intervening communication software. Each CUnet IC has a built-in 512-byte memory consists of 64 blocks, which includes both 8-byte "self-owned area" to which only the IC itself can write data and the area where the data of other CUnet ICs is copied. The data written in "self-owned area" will be shared (copied) immediately to all terminals by broadcasting. This allows each terminal (CPU) to understand the status of other CUnet ICs just by reading the memory of CUnet ICs connected to itself.


[Input operation of the slave]

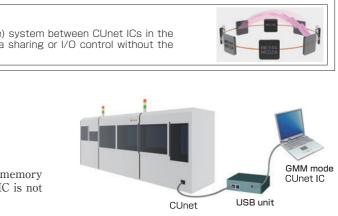
Input data of the slave is automatically written in "self-owned area" and shared (or copied) to all terminals.

[Output operation of the slave]

The slave selects a master IC for multi-master configuration and outputs the data in "self-owned area" of the master CUnet IC.

* The master is set by DOSA (Data Output Station Address) pin of the slave.

Mail function (P2P data transmission)

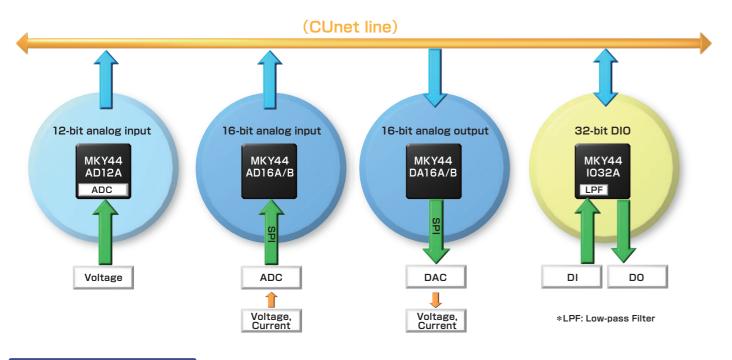

The data up to 256 bytes can be sent and received in P2P (one-to-one) system between CUnet ICs in the MEM mode. Also, the mail function can operate concurrently with data sharing or I/O control without the cycle time delay in the CUnet.

GMM (Global Memory Monitor) function

GMM function is available in CUnet ICs in MEM mode.

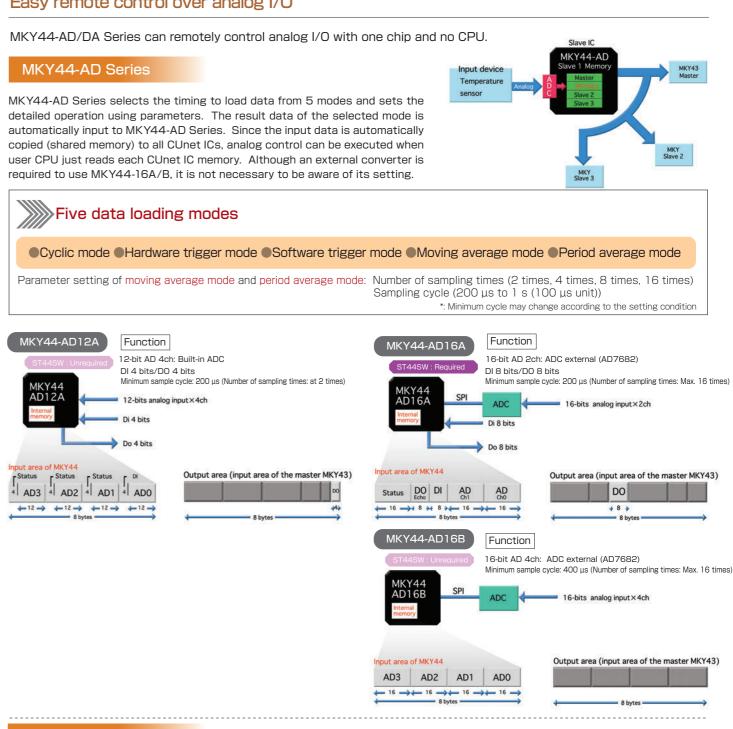
"GMM function" is a function that enables monitoring the shared memory and register while operating the network. In GMM mode, CUnet IC is not counted as a terminal that constitutes the network.

MKY44 Series


Intelligent slave IC supporting CUnet family

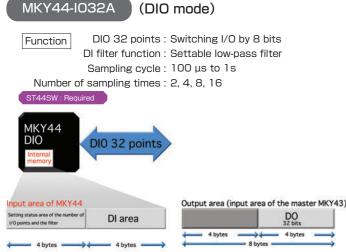
- Easily networking digital I/O and analog I/O
- Enabling various controls with one chip and no CPU

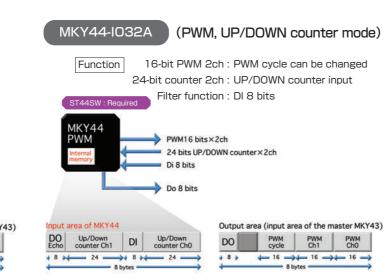
Built-in middleware even though it is a slave IC


MKY44 is an intelligent slave IC that enables easily networking of digital I/O control and analog I/O control. The MKY44 (except MKY44-SPI) does not require user CPU.

Though user CPU is normally required in order to control digital I/O and analog I/O, these controls can be executed by one chip using MKY44.

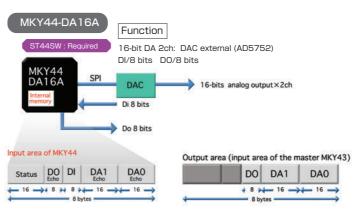
Analog I/O

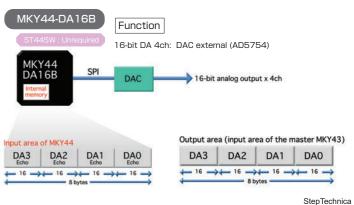

Easy remote control over analog I/O



Digital I/O

Easy remote control over intelligent DIO


MKY44-IO Series can remotely control digital IO intelligently without using CPU. The MKY44-IO32A has two different modes, and you can select either.

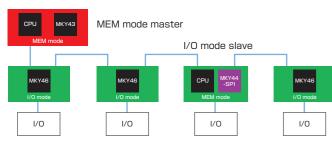


MKY44-DA Series

MKY44-DA Series can control DA just by writing the data from user CPU to the memory of master IC (MKY43) corresponding to each slave (MKY44-DA Series).

10 | StepTechnica

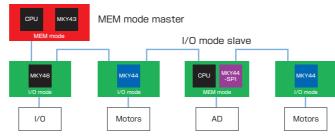
Connection patterns of CUnet


Read the following to understand the connection patterns of CUnet.

Color coding in connection patterns

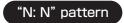
	Master board	Slave board		
Board image	CPU MKY43	MKY46	мку44	CPU MKY44 -SPI
Mode	MEM mode	I/O mode	I/O mode	MEM mode
CPU	Required	Unrequired	Unrequired	Required
Function	Master board	Control DIO	Control DIO, AD and DA	Intelligent slave

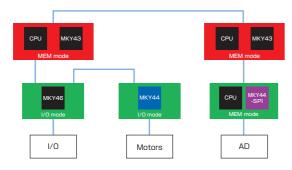
"1: N" pattern


① Optimum "1:N" pattern for I/O control

This is a network pattern consisting of one master board and several slave boards.

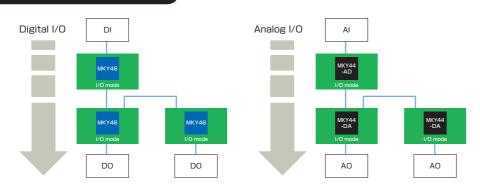
One slave board can flexiblly set and control 32-bit DIO in 4-bit units. * If a higher-speed baud rate is required in this pattern, also HLS is available.


② Optimum "1:N" pattern for sharing control data of devices such as actuators


This is a network pattern consisting of one master board and several intelligent slaves.

You can easily control AD and DA.

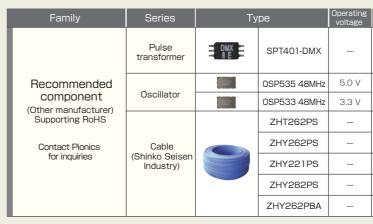
You can also realize decentralized control easily because every CUnet IC shares these controlling data (operating status) in real-time.



• "N:N" pattern for sensor actuator control and data sharing (multi-master type)

This network pattern consists of several MEM mode masters and several I/O mode slaves. Visualize several "1:N networks" being connected. Since several MEM mode masters also share all the data, it can easily provide multi-master type distributed control.

Non-CPU pattern with IO mode only


This network pattern consists of I/O mode only. It provides non-CPU DIO control with I/O mode only.

Enabling CPU-less communication, it demonstrates built-in communication protocols. Since it does not require programs and CPUs, development cost can be reduced significantly.

IC Family

Recommended Components

Size	Function	Features
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	Supporting 16/8-bit bus CPU interface	Requiring CPU connection
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	DIN: 16 bits DOUT: 16 bits	Non-CPU Low power consumption
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	HUB function	Non-CPU T-type branching and wiring extension possible Up to 7-level connection possible
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	Master/Slave IC Supporting 16/8-bit bus CPU interface	Requiring CPU connection Supporting data sharing Supporting mail function (256-byte data transmission)
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	Master/Slave IC SPI slave function (Max 1 Mbps)	Requiring CPU connection Supporting data sharing Supporting mail function (256-byte data transmission)
100-pin, TQFP 0.5 mm pitch 14 mm×14 mm	DIN/DOUT: 32 bits	Non-CPU Switching DIN/DOUT in 4 bits
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	32 DIN/OUT with filter 2 ch 24 bits Up/ Down Counter (Encoder) 2 ch 16 bits PWM output	Non-CPU Switching DIN/DOUT in 8 bits ST44SW: Required
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	12 bits AD 4 ch 4 DIN/4 DOUT	Non-CPU Built-in ADC ST44SW: Unrequired
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	16 bits AD 2 ch 8 DIN/8 DOUT	Non-CPU ADC external: AD7682 ST44SW: Required
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	16 bits AD 4 ch	Non-CPU ADC external: AD7682 ST44SW: Unrequired
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	16 bits DA 2 ch 8 DIN/8 DOUT	Non-CPU DAC external: AD5752 ST44SW: Required
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	16 bits DA 4 ch	Non-CPU DAC external: AD5754 ST44SW: Unrequired
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	Improving the speed of communication between I/O	Used in communication between I/O modes
64-pin, TQFP 0.5 mm pitch 10 mm×10 mm	HUB function	
32-pin, TQFP 0.8 mm pitch 7 mm×7 mm	Baud rate, address(SA), Master specifying address(DOSA), and other 2 bits	IC for MKY44 Series setting SW Required for several MKY44 Series

Size		Function	Specifications		
	9.4 mm(W) 4.6 mm(D) 2.5 mm(H)	Isolates each device electrically (with DC components). Protects devices from external noise.	1.5-kV withstand voltage Winding ratio: 1:1 Inductance: 400 μH Operating temperature limit: -25°C to +70°C		
	5.0 mm(W) 3.2 mm(D) 0.9 mm(H)	Oscillator dedicated for MKY (48 MHz)	Frequency: 48 MHz		
	300 m/reel		2 pairs of aluminum-shielded single wire		
			2 pairs of aluminum-shielded twisted wire		
	200 m/reel	Impedance: 100 Ω	l pair of aluminum-shielded twisted wire		
	300 m/reel		2 pairs of flex resistant aluminum-shielded twisted wire		
	300 m/reel		Braided 2 pairs of aluminum-shielded twisted wire		

The board product family is for evaluation. Cannot be using these boards embedded in your application.

Family	Series	Туре	Mounted IC	Communication Speed/Mode	Operating voltage	Size	Function	Features
	Master board	Coming Soon EB-36	Утека УКУ36 МКУ36	12/6/3 Mbps Full-duplex/ Half-duplex	24.0 V	200 mm (W) 160 mm (D) 15 mm (H) Nucleo not included	HLS master function Can be controlled by ST-Micro's Nucleo. *1	Communication connector: Modular
HLS Hepeed Supporting RoHS		HLS-36USB			5.0 V	66.5 mm (W) 92 mm (D) 28 mm (H)	HLS master function Supported OS Windows 10 (64/32 bits)	Compatible with USB 2.0 HS Communication connector: Modular
	Slave board	Coming soon EB-37	Stower MKY37 MKY37		24.0 V	210 mm (W) 180 mm (D) 15 mm (H)	Isolated 16DIN Isolated 16D0UT	Communication connector: Modular
Family	Series	Туре	Mounted IC	Communication Speed/Mode	Operating voltage	Size	Function	Features
		Coming scon EB-43	Strove		24.0 V	200 mm (W) 160 mm (D) 15 mm (H) Nucleo not included	CUnet master function Can be controlled by ST-Micro's Nucleo. *1	Communication connector: Modular
	Master board	CU-43USB	МКҮ43		5.0 V	66.5 mm (W) 92 mm (D) 28 mm (H)	CUnet master function Supported OS Windows 10 (64/32 bits)	Compatible with USB 2.0 HS Communication connector: Modular
		Coming Soon EB-44SPI	97-0-0 113/2501 113/2501 MKY44-SPI		24.0 V	255 mm (W) 180 mm (D) 15 mm (H) Nucleo not included	CUnet master function Can be controlled by ST-Micro's Nucleo. *1	Communication connector: Modular
		Coming soon EB-46	MKY46			250 mm (W) 205 mm (D) 15 mm (H)	32DIO (Isolated DIN, Isolated DOUT)	Communication connector: Modular DIN, DOUT points selectable
CUnet Supporting RoHS		Coming soon EB-441032A	976mma MKY44 032A 01 935F503T	12/6/3 Mbps Half-duplex		255 mm (W) 205 mm (D) 15 mm (H)	32DIO (Isolated DIN, Isolated DOUT)	Communication connector: Modular DIN, DOUT points selectable
		Coming Soon EB-44AD12A	Stever MKY44-AD12A			185 mm (W) 185 mm (D) 15 mm (H)	12-bit AD 4 ch Isolated 4DIN Isolated 4D0UT	Communication connector: Modular
	Slave board	Coming soon	SFcorce MK144 A056 of 1 13555037		24.0 V	185 mm (W) 200 mm (D) 15 mm (H)	16-bit AD 2 ch Isolated 8DIN Isolated 8DOUT	Communication connector: Modular

*1: Please obtain the ST-Micro Nucleo yourself.

Buy online

You can get quotations and buy StepTechnica's products, partners' products, and recommended components on Pionics' (the sole distributor) website.

EB-44AD16A

Coming soon

EB-44AD16B

Fil

EB-44DA16A

num B 20 EB-44DA16B MKY44-AD16A

MKY44 AD168 01

MKY44-AD16B

MKY44 DA16A 01

MKY44-DA16A

MKY44 DA168 01

MKY44-DA16E

Pionics Pionics Co., Ltd. Official website www.pionics.co.jp

Free software

Editor

These editors are GUI-type developing support software dedicated for each of the master boards.

- You can operate the memory status and the registers of the device in detail.
- HLSeditor (for HLS) Target board: HLS-36USB
- CUeditor (for CUnet) Target board: CU-43USB

Assistance software

These softwares are GUI-type developing support software dedicated for each of the master boards. You can easily monitor and operate HLS and CUnet if you are not sure about the details of the network.

- ASSIST-HLS (for HLS) Target board: HLS-36USB
- ASSIST-CU (for CUnet) Target board: CU-43USB

CUnet Slave Address Auto Mapper

This is a support tool for CUnet slave settings. You can easily consider the network structure consisting of different slave terminals by automatically calculating the values required for the setting of CUnet slave addresses.

♦SETUP44

This is a tool for MKY44 series IC.

You can set each of the required function parameters to operate MKY44 series IC. This software requires CU-43USB.

Comparative table of HLS and CUnet							
	HLS	CUnet					
Network structure	1:N	N:N					
Features	High-speed DIO control	Data sharing Intelligent DIO and analog I/O					
Control method	Read/Write memory	Read/Write memory					
Communication method	Master/Slave type polling method	Multi-master type broadcast method					
Network topology	Multi-drop (RS485)	Multi-drop (RS485)					
Communication speed	12 Mbps/6 Mbps/3 Mbps (full duplex/half duplex)	12 Mbps/6 Mbps/3 Mbps (half duplex)					
Communication cable	Shielded cable of more than category 5	Shielded cable of more than category 5					
Number of connection nodes	63	64					
Minimum data length	DIN: 16 bits, DOUT: 16 bits	8 bytes					
Maximum data length	DIN: 1008 bits, DOUT: 1008 bits	512 bytes					
Fastest response (per terminal)	Арргох. 15 µsec	Арргох. 37 µsec					
Fastest response (when all terminals are operating)	Approx. 955 µsec	Approx. 2365 µsec					
Digital I/O control	0	0					
Analog I/O control	Δ	0					
Mail function (Messaging)	×	(256 bytes)					
Monitoring function (GMM)	×	0					
Communication distance	12 Mbps:100 m 6 Mbps:200 m 3 Mbps:300 m	12 Mbps:100 m 6 Mbps:200 m 3 Mbps:300 m					
Topology	Bus (when using HUB: tree/star)	Bus (when using HUB: tree/star)					

Note : The trademarks described in this document are the registered trademarks of the respective companies. "HLS" (Japanese trademark registration number: 2645060) is licensed by Murata Manufacturing Co., Ltd.

155 mm (W) Communication 16-bit DA 4 ch 185 mm (D) connector: Modular 15 mm (H)

16-bit AD 4 ch

16-bit DA 2 ch

Isolated 8DIN

Isolated 8DOUT

Communication

connector: Modular

Communication

connector: Modular

155 mm (W)

220 mm (D)

15 mm (H)

185 mm (W)

185 mm (D)

15 mm (H)

HLSeditor

